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Abstract—This paper presents a voice-controlled robotic arm with 
four degrees of freedom (DOF) designed to automate drink serving 
in a bartender domain. The system uses an overhead camera with 
You Only Look Once (YOLO) architecture to detect and localize 
cups, obstacles, and the drink dispenser within the robot's 
workspace. Voice orders are recognized using a SqueezeFormer 
model, enabling customers to place orders. Model Predictive 
Control (MPC) ensures precise motion of the robotic arm. The 
arm's joints employ a cycloidal drive for precise movement and 
reduced backlash, while inverse kinematics is calculated using the 
Gradient Descent method. The object detection model achieved a 
mean Average Precision (mAP50) score of 0.981, and the speech 
recognition model demonstrated a Word Error Rate (WER) of 
0.081 on the test dataset. The system's reliability was validated 
through multiple experiments with customers, with the average 
time to complete a drink order measured at approximately 30 
seconds.  
Keywords—Cycloidal, gradient descent, model predictive control. 

 

I. INTRODUCTION 
ARTENDERS rat bars handle repetitive tasks like serving 
drinks and managing inventory, which are essential for 
smooth service and consistent quality. However, 

challenges like high labor costs and staff fatigue persist. As a 
result, the use of robotics is advancing in this sector, offering 
solutions to improve efficiency and reduce the burden on 
human staff. 
We have developed a voice-controlled robotic arm with four 
degrees of freedom to streamline the repetitive task of drink 
serving in the bartending industry. The system also includes an 
overhead camera that uses the YOLO object detection 
algorithm to identify and locate cups, drink dispenser, and any 
obstacles within the robot's operating area. 
Our project simplifies robotic drink serving with an affordable, 
four-degree-of-freedom robotic arm, designed for precise 
control using cycloidal drives. This approach makes the system 
more accessible compared to high-cost alternatives while 
maintaining performance. The key contributions of our research 
are: 
1. Reduction of the degrees of freedom of the robotic arm for 

drink serving robots. 
2. Usage of cycloidal drives in the joints to provide precise 

 
 

 
control in an economically viable design. 

II. RELATED WORKS 
Many industrial applications of robotic system for drink serving 
include complex design such as an anthropomorphic structure 
that embodies a 3 DOF robotic head, a fixed torso, two 7DOF 
robotic arms as well as multi-lens camera system to detect and 
track users faces [1]. A commercial 6 DOF robotic arm was 
used along with multiple subsystems for ingredient dispensing 
and automatic washing [2]. 
A 3DOF robotic arm setup with monocular camera was 
designed that can recognize the color and depth of the object, 
enabling it to operate to the target position and grasp the object 
accurately. The color of the objects are identified based on HSV 
values and the inverse kinematics problem for the robotic arm 
was solved using geometric approach. Model Predictive 
Control (MPC) was used to get the optimal input torques on 
each joints of the robotic arm [3]. 
A 6-degree-of-freedom robotic arm was designed to recognize 
objects using a shape detection algorithm and to enhance pick- 
up accuracy by utilizing an ultrasonic sensor for measuring the 
distance between the objects and the arm. The robotic arm's 
movement was controlled via Amazon Alexa voice assistance, 
allowing for hands-free operation. To manipulate the arm's 
position for object grasping, an artificial neural network was 
employed, trained using data calculated from inverse 
kinematics equations [4]. 
The design and implementation of a robotic assistant system 
was based on the Niryo-One robotic arm, a 6-DOF arm, 
integrated with a camera mounted on the end effector. The 
system utilized shape and color detection techniques, along 
with the YOLOv3 algorithm, to identify and locate the 
requested object. For voice interaction, the Google Voice 
Recognition API was employed. Experimental results showed 
that the robotic arm was able to accurately detect and deliver 
the desired object with an accuracy rate of 96.66% [5]. 
Current research on robotic drink serving systems shows clear 
gaps, particularly in creating cost-effective robotic arms for 
bartending. While some designs focus on affordability, they 
often compromise on the precise control needed for tasks like  
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Fig. 1. 3D model of cycloidal drive parts. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. 3D printed parts of the cycloidal drive. 
 
drink serving. This highlights the need for solutions that 
balance both cost and accuracy in robotic systems. 

III. SYSTEM DESIGN AND METHODOLOGY 

A. Mechanical Design 
The robotic arm consists of four joints and a gripping 
mechanism. Each joint includes components such as a housing 
case, cycloidal disk, eccentric shaft, shaft coupler, motor 
mount, and output coupling pair, all designed in Fusion360 as 
shown in Fig.1 and 3D printed in Polylactic Acid (PLA), a 
biodegradable 3D printing material, as shown in Fig. 2. 
Industrial curtain rods serve as the links between joints, and the 
gripper is also 3D printed. For drink dispensing, the system uses 
four DC pumps, each designated for a specific drink, along with 
pump-switching circuitry, as shown in Fig. 3. The pump-
switching circuitry consists of four NPN transistors, which 
activate based on the drink selected by the customer, enabling 
the corresponding pump. 

B. Experimental Setup 
The tabletop setup features a 4DOF robotic arm with stepper 
motors (Nema 17) driving the joints utilizing stepper driver  

 

Fig. 3. Drink dispenser. 
 
(TB6600), an MG90 servo for the gripper, controlled by an 
Arduino Uno. A Raspberry Pi handles multimodal computation, 
a microphone for the voice input, an overhead camera to scan 
the tabletop, a Bluetooth speaker for feedback, and a drink 
dispenser, all powered by a 12V supply as shown in Fig. 4. 

C. Working Principle 
The microphone captures the customer’s drink order, which is 
processed by an Automatic Speech Recognition (ASR) model 
to convert it into text. Simultaneously, the overhead camera 
monitors the tabletop, sending real-time images to a YOLO 
object detection model to identify objects such as cups, 
dispensers, obstacles, and nozzles, as shown in Fig. 4. The 
detected object coordinates are then mapped to the physical 
environment’s coordinate system. Any anomalies in the voice 
or vision inputs—such as invalid drink orders, the absence of 
cups, or obstacles on the workspace—trigger voice feedback 
through the speaker. The inverse kinematics algorithm 
calculates the necessary joint angles for the robotic arm, which 
are further processed by a model predictive controller to 
generate the joint angle trajectories. These trajectories are 
translated into control signals by the Arduino, which directs the 
robotic arm's joints to execute the required movements. The 
overall workflow is shown in Fig. 5. 

D. Automatic Speech Recognition 
Dataset Preparation: The first step was to finalize the number 
of drinks that the system is going to serve and form orders 
according to that. Four drinks were finalized with five orders 
variations for each one of them aiming for generalization. 
However, the system is not limited to the specific order 
variations listed in the (I). It can recognize and process any 
order that uses vocabulary from these phrases, allowing for 
flexible and natural speech patterns. A wake word, 'Hey Arm', 
has been integrated into the ASR system to ensure that the 
model only responds to orders after detecting this specific 
trigger phrase. The audio recordings for each of the order were 
collected by collaborating with multiple schools and colleges 
around Kathmandu. The participant pool consisted of students 
ranging from high school level to graduate studies, as well as 
teachers and campus staff ensuring representation across  
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Fig. 4. Complete project setup. 
 

 
Fig. 5. System Block Diagram 

 
various age groups. A total of 207 audio sample for different 
variations of each drink orders were recorded, as shown in the 
Fig. 6. The audio recordings, captured in WAV format with 
mono channel at a sample rate of 16 kHz, utilizes Fantech 
MCX01 Leviosa, a professional condenser microphone. 
Frequency Domain Conversion: To convert recorded voice 
sample from the amplitude-time domain to the frequency-time 

domain, spectrogram is employed. This is crucial for analyzing 
phonemes and various linguistic features, which correspond to 
specific frequency components. The conversion to the 
frequency domain generally involves performing a Short-Time 
Fourier Transform (STFT) on the audio signal to generate a 
spectrogram. Following this, a Mel filter bank is applied to the 
spectrogram to produce a Mel spectrogram, which offers a 
representation of the audio signal that is more aligned with  
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TABLE I: DIFFERENT VARIATIONS OF SAMPLE ORDERS 
 

Variation Order 

1 Provide me with a cup of <drink name> 

2 Fill up a cup with <drink name> please 

3 I would like a cup of <drink name> 

4 Can you get me a cup of <drink name> 

5 Make me a cup of <drink name> 

 

 

 

 

 

 

 

 

 

 
Fig. 6. Audio sample counts for drink orders. 

 

 

 

 

 

Fig. 7. Raw glimpse of objects utilized for the dataset. 
 

human auditory perception. 

Training Squeezeformer Model: The pretrained 
Squeezeformer-CTC model is used which has been trained on 
Librispeech 960 hours corpus. It utilizes a Google Sentence 
Piece tokenizer with vocabulary size 128, and transcribes text 
in lower case English alphabet along with spaces, apostrophes 
and a few other characters. For the proposed system, the 
encoder of the Squeezeformer model is frozen, and only the 
decoder is fine-tuned on the custom dataset. The model 
processes raw audio waveforms through its preprocessor to 
generate mel spectrograms, which pass through an encoder 
comprising depth wise separable convolutions, multi-head self-
attention, feed-forward networks, and convolutional modules 
with relative positional encoding and time reduction. The 
encoder's final embeddings are mapped to output labels by the 
decoder, a 1D convolution layer. The model is trained using 
Connectionist Temporal Classification (CTC) loss to align 
predictions with target sequences. 

E. Object Detection Model 
Dataset Preparation and Training: The pictures of cups,  

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8. Object count before and after image augmentation. 

Fig. 9. Overhead camera view of physical environment. 

 
obstacles, nozzle, and dispenser are taken from an overhead 
camera with a resolution of 1280x720 at different positions, 
orientations, and under varied lighting conditions. The objects 
utilized in the making of dataset are shown in the Fig. 7. 
The images are annotated using the online tool CVAT. After 
annotation, multiple image augmentation techniques like flip, 
rotation, and changes in brightness were applied to increase the 
size and variability of the dataset. Following augmentation, there 
were around 1250 object instances across all classes in the dataset 
as shown in Fig. 8. The dataset was then exported in Darknet 
format, which is used for the YOLOv8 model. It was further 
divided into training and testing sets. Finally, the YOLOv8 
detection model was finetuned on our dataset. 

F. Coordinate Mapping 
Robotic vision systems require mapping the coordinates of the 
detected objects from the camera frame to the physical 
environment. A total of 9 camera coordinates of different 
locations inside the field of view of the camera were 
meticulously listed along with their corresponding physical 
environment coordinates, as shown in Fig. 9. They were utilized 
to derive the transformation matrix that maps the camera 
coordinates to the physical environment coordinate. 

G. 4-DOF Robotic Arm 
Kinematic Model of the Robotic Arm: The kinematic model 
of the robotic arm is formulated using the DH convention that 
ultimately provides the homogeneous transformation matrix 
that tells both the rotation and position of one frame n relative  
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TABLE II: NOMENCLATURE FOR KINEMATIC MODEL 

 

TABLE III: DH PARAMETER FOR KINEMATIC MODEL 
 

n(link) 
Parameters 

𝜃𝜃 𝛼𝛼 r d 
1 𝜃𝜃1 90° 0 𝑎𝑎1 
2 𝜃𝜃2+90° 0 𝑎𝑎2 0 
3 𝜃𝜃3 0 𝑎𝑎3 0 
4 𝜃𝜃4-90° 0 𝑎𝑎4 0 

 

TABLE IV: NOMENCLATURE FOR INVERSE KINEMATICS 
PROBLEM  

 
to another frame m. It is denoted as 𝐻𝐻𝐻𝐻. The DH parameter is 
demonstrated in Table III. 

𝐻𝐻𝑛𝑛𝑛𝑛−1 = [
𝑐𝑐(𝜃𝜃𝑛𝑛) −𝑠𝑠(𝜃𝜃𝑛𝑛)𝑐𝑐(𝛼𝛼𝑛𝑛) 𝑠𝑠(𝜃𝜃𝑛𝑛)𝑐𝑐(𝛼𝛼𝑛𝑛) 𝑟𝑟𝑛𝑛𝑐𝑐(𝜃𝜃𝑛𝑛)
𝑠𝑠(𝜃𝜃𝑛𝑛) 𝑐𝑐(𝜃𝜃𝑛𝑛)𝑠𝑠(𝛼𝛼𝑛𝑛) −𝑐𝑐(𝜃𝜃𝑛𝑛)𝑠𝑠(𝛼𝛼𝑛𝑛) 𝑟𝑟𝑛𝑛𝑠𝑠(𝜃𝜃𝑛𝑛)

0 𝑠𝑠(𝛼𝛼𝑛𝑛) 𝑐𝑐(𝛼𝛼𝑛𝑛) 𝑑𝑑𝑛𝑛
0 0 0 1

]   (1) 

The overall transformation of end effector w.r.t base frame is 
given by: 

𝐻𝐻4
0 = [

𝑐𝑐1𝑐𝑐234 −𝑐𝑐1𝑠𝑠234 𝑠𝑠1 𝑖𝑖1
𝑐𝑐234𝑠𝑠1 −𝑠𝑠1𝑠𝑠234 −𝑐𝑐1 𝑖𝑖2
𝑠𝑠234 𝑐𝑐234 0 𝑖𝑖3

0 0 0 1
]   (2) 

where  
𝑖𝑖1 = −𝑐𝑐1(−α4c234 + α2s2 + α3s23) 
𝑖𝑖2 = −𝑠𝑠1(−α4c234 + α2s2 + α3s23) 

𝑖𝑖3 = α4s234 + α2c2 + α3s23 + α1 
 
The first three row’s element of fourth column of the given 
matrix provides the x, y, z position of the end-effector given the 
joint angles which are the forward kinematics equations. The 
inverse kinematics problem is solved using gradient descent. 
This method relies on the Jacobian matrix, which relates the rate 
of change of the end-effector's position and orientation to 
changes in the joint angles of the robot. A complete inverse 
kinematics solution not only calculates the necessary joint 
angles to position the end-effector at the target but also ensures 
that the end-effector is correctly oriented when it reaches the 
destination.  
Algorithm 1 Inverse Kinematics via Gradient Descent 

Require: 𝐻𝐻𝑑𝑑 and 𝐻𝐻𝑘𝑘 at step k, 𝐽𝐽+, 𝛼𝛼, 𝐹𝐹(𝜃𝜃𝑖𝑖) 
Loop 

Stop after ||𝜃𝜃𝑘𝑘|| ≈ 0 
 

Evaluate  
∆𝑥𝑥 = [𝑒𝑒𝑝𝑝

𝑒𝑒0] 

Compute ∆𝜃𝜃 = 𝐽𝐽+∆𝑥𝑥 
Increment 𝜃𝜃𝑘𝑘 to converge end effector pose on the desired pose: 
𝜃𝜃𝑘𝑘+1 = 𝜃𝜃𝑘𝑘 + 𝛼𝛼𝐽𝐽+∆𝜃𝜃𝑘𝑘                                                          (3) 
Dynamic Model of the Robotic Arm: The dynamic model of 
the robotic arm gives information of torque and other forces 
resulting in the motion of the robot. The dynamic model was 
derived using Euler-Lagrange methods and is given by: 

(𝜃𝜃)𝜃𝜃¨ + 𝐶𝐶(𝜃𝜃, 𝜃𝜃˙)𝜃𝜃˙ + 𝑔𝑔(𝜃𝜃) = 𝜏𝜏 (4) 

where 𝜃𝜃 is the joint angle, 𝜃𝜃˙ is the joint velocity, 𝜃𝜃¨ is the joint 
acceleration, 𝐷𝐷(𝜃𝜃) is the manipulator inertia matrix, C is the 
vector of Coriolis and centrifugal forces, g is the vector of 
gravity forces and 𝜏𝜏 is joint torques. The above equation can be 
rewritten with a separate highest derivative as follows: 

𝜃𝜃¨ = −𝐷𝐷−1𝐶𝐶𝜃𝜃˙ − 𝐷𝐷−1𝑔𝑔 + 𝐷𝐷−1𝜏𝜏   (5) 
Now, this equation is suitable for further modification that 
enables us to obtain the standard linear-like state-space model 

Symbol Remarks 
𝜃𝜃𝑖𝑖 Angle of 𝑖𝑖𝑡𝑡ℎ joint 
𝑎𝑎𝑖𝑖 Length of 𝑖𝑖𝑡𝑡ℎ link 
𝛼𝛼 The amount of rotation of 𝑓𝑓𝑟𝑟𝑎𝑎𝐻𝐻𝑒𝑒𝑖𝑖−1around axis 

𝑥𝑥𝑖𝑖 to get axis 𝑧𝑧𝑖𝑖−1 to match 𝑧𝑧𝑖𝑖 
𝑟𝑟 The amount of displacement from 

𝑓𝑓𝑟𝑟𝑎𝑎𝐻𝐻𝑒𝑒𝑖𝑖−1to the 𝑓𝑓𝑟𝑟𝑎𝑎𝐻𝐻𝑒𝑒𝑖𝑖 measured only in 
𝑥𝑥𝑖𝑖 direction 

d The amount of displacement from 
𝑓𝑓𝑟𝑟𝑎𝑎𝐻𝐻𝑒𝑒𝑖𝑖−1to the 𝑓𝑓𝑟𝑟𝑎𝑎𝐻𝐻𝑒𝑒𝑖𝑖 measured only in 

𝑧𝑧𝑖𝑖−1 direction 
𝑐𝑐𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠𝜃𝜃𝑖𝑖 
𝑠𝑠𝑖𝑖 𝑠𝑠𝑖𝑖𝑠𝑠𝜃𝜃𝑖𝑖 
𝑠𝑠𝑖𝑖𝑖𝑖 sin(𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑖𝑖) 
𝑐𝑐𝑖𝑖𝑖𝑖 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑖𝑖) 

𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘 𝑐𝑐𝑐𝑐𝑠𝑠(𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑘𝑘) 
𝑠𝑠𝑖𝑖𝑖𝑖𝑘𝑘 𝑠𝑠𝑖𝑖𝑠𝑠(𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑖𝑖 + 𝜃𝜃𝑘𝑘) 

�̇�𝑥, �̇�𝑦, �̇�𝑧 Linear velocities of end effector in x, y, z 
direction 

𝑤𝑤𝑥𝑥, 𝑤𝑤𝑦𝑦, 𝑤𝑤𝑧𝑧 Angular velocities of end effector in x, y, z 
direction 

�̇�𝜃𝜄𝜄 𝑖𝑖𝑡𝑡ℎ joint velocities 

Symbol Remarks 

𝐻𝐻𝑘𝑘 
Current homogeneous transformation matrix of 

end effector w.r.t base 

𝛼𝛼 Step size 

𝐻𝐻𝑑𝑑 
Desired homogeneous transformation matrix of 

end effector w.r.t base 

∆𝑥𝑥 
Vector: difference in desired and actual pose of the end 

effector 

𝑒𝑒𝑝𝑝, 𝑒𝑒𝑐𝑐 
Vectors: position and orientation error between 

current and desired pose 

𝜃𝜃𝑘𝑘 Vector: joint angles at time instant k 

𝐹𝐹𝐹𝐹(𝜃𝜃𝑖𝑖) 
Forward Kinematics method; provides end 

effector 𝑥𝑥, 𝑦𝑦, 𝑧𝑧 position according to given joint angles 

∆𝜃𝜃 Vector: Change in joint angles 

𝐽𝐽+ Pseudo-Inverse of Jacobian matrix 
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Fig. 10. System block diagram of model predictive controller. 

Fig. 11. Word error rate curve. 
  
for control design. It can be written as follows: 
 

[�̇�𝜃�̈�𝜃] = [04×4 𝐼𝐼4×4
04×4 −𝐷𝐷−1𝐶𝐶4×4

] [𝜃𝜃4×4�̇�𝜃4×1
] + (04×4𝐼𝐼4×4 ) + [04×4𝐼𝐼4×4 ] 𝑢𝑢4×1(6) 

 

           [𝜃𝜃4×1] = [𝐼𝐼4×4 04×4] [
𝜃𝜃4×1
�̇�𝜃4×1

]                    (7) 

 
 
which follows the form: 

        𝑥𝑥𝑘𝑘+1 = 𝐴𝐴𝑥𝑥𝑘𝑘 + 𝐵𝐵𝑢𝑢𝑘𝑘           (8) 
                 𝑧𝑧𝑘𝑘 = 𝐶𝐶𝑥𝑥𝑘𝑘                         (9) 

Also, the calculation of joint torques from an auxiliary vector 
of control actions 𝑢𝑢 is given by: 

               𝜏𝜏 = 𝑀𝑀𝑢𝑢 + 𝑔𝑔            (10) 

MPC uses the model of the plant to make predictions about the 
future plant output behavior. It also uses the optimizer which 
ensures that the predicted output tracks the reference 
trajectory. The MPC controller needs to find the best 
predicted output so that it is closest to the reference. So, it 
simulates multiple future scenarios, also accounting for the 
given input/output constraints and the predicted output with 
the smallest cost function provides the optimal solution of the 
future inputs that is fed onto the model, as shown in Fig. 10. 

Now, from the derived state-space model (8) and (9), 𝑥𝑥𝑘𝑘 is 
the state, 𝑢𝑢𝑘𝑘 is the control input, 𝑧𝑧𝑘𝑘 is the output that we 
want to control, and A, B and C are the system model 
matrices. The goal of a model predictive controller is to 
determine a sequence of control inputs, 𝑢𝑢𝑘𝑘+𝑖𝑖|𝑘𝑘, 𝑖𝑖 = 0,1,2, … , v  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Various objects detected along with the confidence score. 

 
Fig. 13. Mean average precision score. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 14. Confusion matrix. 
 
− 1 at a specific time step k and control horizon (v). These 
inputs are intended to steer the system's output, 𝑧𝑧𝑘𝑘+𝑖𝑖, 𝑖𝑖 = 1,2,3, 
… , f towards a reference trajectory (the specified control path) 
within the prediction horizon (f). To accomplish this, the 
controller utilizes the current system state 𝑥𝑥𝑘𝑘 and the system 
model matrices A, B, and C to forecast the future output  



80 
NCE Journal of Science and Technology (NJSE), Vol. 2, June 2025                                                               ISSN: 2717-4794 
 

 

 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

Fig. 15. Different actions performed by robotic arm from being at home position to serving drink to customer (left to right). 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

Fig. 16. Reference trajectory tracking for different joints while grabbing empty cup by the robotic arm. 
 
trajectory 𝑧𝑧𝑘𝑘+𝑖𝑖|𝑘𝑘, 𝑖𝑖 = 0,1,2,3, … , f. The inputs are then optimized 
by minimizing the deviation between the forecasted and 
reference trajectories. The reference trajectories for each joint 
are 250 evenly spaced values from the current joint angles to the 
target joint angles determined by inverse kinematics. The goal 
is to track a reference trajectory which is given by: 

𝑍𝑍𝑑𝑑 =

[
 
 
 
 𝑍𝑍𝑘𝑘+1

𝑑𝑑

𝑍𝑍𝑘𝑘+2
𝑑𝑑

…
𝑍𝑍𝑘𝑘+𝑓𝑓

𝑑𝑑 ]
 
 
 
 
                (11) 

Now, the optimization problem is to determine the vector u 
minimizing the overall cost function given by:  

(𝐽𝐽𝑧𝑧 + 𝐽𝐽𝑢𝑢)𝑢𝑢
𝑚𝑚𝑚𝑚𝑚𝑚  

where  

𝐽𝐽𝑧𝑧 = (𝑍𝑍𝑑𝑑 − 𝑍𝑍)𝑇𝑇𝑊𝑊4(𝑍𝑍𝑑𝑑 − 𝑍𝑍)         (12) 

    𝐽𝐽𝑢𝑢 = (𝑊𝑊1𝑢𝑢)𝑇𝑇𝑊𝑊2(𝑊𝑊1𝑢𝑢)             (13) 

where W1, W2, and W4 are user-defined weight matrices to 
penalize input changes error (𝐽𝐽𝑢𝑢) and trajectory tracking error 
(𝐽𝐽𝑧𝑧), respectively. Ultimately, to obtain the solution of the model 
predictive control problem, the cost function described above 
should be minimized.  

IV. RESULTS AND DISCUSSION 
A. Automatic Speech Recognition Model 

The speech recognition model's performance is assessed using 
WER. It gauges the percentage of inaccurate words in the 
recognized transcriptions. It was employed to monitor the 
model's performance during both training and testing phases. 
The WER gradually decreases with an increasing number of 
epochs for both the training and validation datasets, reaching 
0.081 for the validation dataset, suggesting that the model has 
achieved a high level of accuracy recognizing and transcribing 
speech, as shown in Fig. 11.  

Sample Calculation of WER:  
Reference: "fill a cup of coffee please"  
Prediction": "fill a cup of coffeee please"  
Number of substitutions (S) = 1  
Number of deletions (D) = 0  
Number of insertions (I) = 0  
Number of words in the reference (N) = 6  
 

𝑊𝑊𝑊𝑊𝑊𝑊 = 𝑆𝑆 + 𝐷𝐷 + 𝐼𝐼
𝑁𝑁 = 1

6 = 0.17 
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Fig. 14. Pose error while deriving inverse Kinematics solution. 

 

 

 

 

 
Fig. 15. Robotic arm movement while returning to home position. 

We carried out multiple experiments with male/female 
customers and validated the time required for the robotic arm to 
complete one drink order, from recognizing the customer’s 
voice order to serving the drink to the customer and returning 
to the home position, as approximately 30s.  

B. Object Detection Model 

The object detection model’s performance is assessed using two 
main metrics: Mean Average Precision and Confusion Matrix. 
The mean average precision summarizes the precision-recall 
curve across different classes and the confusion matrix helps in 
identifying which classes are being confused with each other 
providing the detailed view of how well the model is classifying 
object. The overhead camera image showcases multiple 
detected objects, each outlined by bounding boxes generated by 
an object detection algorithm, highlighting their positions and 
spatial distribution within the scene, as shown in Fig. 12. The 
model's precision in detecting and classifying objects, measured 
at an Intersection over Union (IoU) of 0.5 for the validation 
dataset, gradually increases with the number of epochs, 
approaching a value of 0.981.  

This trend suggests that the model has achieved near-perfect 
detection performance, as shown in Fig. 13. For the validation 
datasets, the confusion matrix shows high accuracy, with all 
predictions aligning almost perfectly with the true labels, as 
shown in Fig. 14. The off-diagonal values are all zero except 
for two instances of obstacle misclassified as cup.  

 

C. Action Performed by the Robotic Arm  

The actions performed by the robotic arm from being in the  

TABLE V: SYSTEM OPERATION TIME PER STEP 

 

home position to serving the drinks to costumer are 
demonstrated. At the beginning, Robotic Arm is rested at its 
home position with all joints angles at zero degrees. Upon 
receiving a valid drink command from the customer, the cup's 
location on the table is determined using input from an 
overhead camera and the coordinate mapping algorithm. 
Inverse kinematics is then applied to compute the required joint 
angles for the robotic arm to grasp the cup. If the overhead 
camera detects any obstacles on the table, vocal feedback is 
provided, instructing the user to remove the obstruction before 
the robotic arm can proceed. During the inverse kinematics 
calculations, the pose error gradually decreases, as illustrated in 
Fig. 17. The four robotic joints then follow the reference 
trajectory of angles to reach the target position, as shown in the 
Fig. 16. After grabbing the empty cup, the arm reached towards 
the dispenser to fill the cup with drink ordered by the costumer. 
The robotic arm then serves the drink to the customer and return 
to the home position as shown in Fig.15.  

The second joint requires a maximum torque of 5 Nm to return 
to the home position smoothly after serving a drink to a 
costumer, without any jerky movement. However, the stepper 
motor for the second joint can only provide up to 2.61 Nm of 
torque. To solve this, instead of trying to lift the arm directly, 
we first rotate the fourth joint counter clockwise, followed by 
rotating the third joint in the same direction, to help bring the 
arm back to its home position as shown in Fig.18.  We carried 
out multiple experiments with male/female customers and 
validate the time required for the robotic arm to complete one 
drink order, from recognizing the customer’s voice order to 
serving drink to the customer and returning to the home 
position, as approximately 30s.  

V. CONCLUSION 
A voice-controlled 4-DOF robotic arm to automate the 
repetitive task of drink serving in the bartending industry was 
developed. The system incorporates an overhead camera with 
YOLO object detection to locate cups, dispensers, and 
obstacles, ensuring smooth operation. By using cycloidal 
drives, the design achieves precise control while remaining 
cost-effective. The system was validated through multiple 
experiments, with an average time of approximately 30 seconds 
to complete a drink order. This work not only reduces labor 
costs in bartending but also showcases the potential for robotics 
in assistive applications, such as helping individuals with 
mobility challenges. 
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