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Abstract- Object detection and image segmentation have 
become powerful tools for performing most of computer vision 
tasks, including the detection of waste in aquatic environments. 
However, these approaches have yet to be implemented for waste 
detection in Nepali rivers. To fill this gap, this research assesses 
the effectiveness of the current State-of-The-Art (SOTA) object 
detection models, namely YOLOv5 and YOLOv7, and image 
segmentation techniques such as Fully Convolutional Network 
(FCN) and DeepLabv3+. We evaluate the method at two different 
sites: Dhobi Khola (D1) and Mahadev Khola (D2). YOLOv5 and 
YOLOv7 are evaluated in terms of mean Average Precision (mAP) 
at an Intersection over Union (IoU) threshold of 0.5 and F1 score. 
For segmentation models, we use the Dice score, mean intersection 
over Union (mIoU), and the F1 score as evaluation criteria. The 
metrics reveal that DeepLabv3+ is the best-performing model for 
segmentation tasks, with 0.811 and 0.832 mIoU in D1 and D2, 
respectively. For object detection, YOLOv7x is the better 
performing model on dataset D1 with an F1 score of 0.866 and an 
mAP of 0.862, while YOlOv5m outperformed other models with 
an mAP score of 0.915 and an F1 score of 0.854 on D2. The findings 
of this study highlight the effectiveness of the proposed deep 
learning models in detecting waste in riverine environments. In 
addition, the superior performance of the selected models 
underscores their potential as promising approaches for large-
scale environmental monitoring and waste management 
applications. 
Keywords - Waste Detection, Object Detection, Semantic 
Segmentation, Yolov5 · Yolov7 · DeepLabv3+ · FCN 

 

I. INTRODUCTION 
ivers are a major contributor to marine plastic pollution. More 
than 1000 rivers account for approximately 80 percent of 
global riverine plastic emissions into the ocean [1]. In South 

Asian countries such as Nepal, river pollution is severe and critical 
near urban areas due to the huge amount of pollution caused by urban 
activities. The Bagmati River in Kathmandu Valley is currently 
experiencing severe pollution with a biochemical oxygen demand 
(BOD) in the range of 20-30 mg/liter, and the total coliform is 104-105 
MPN/100 ml [2]. The Bagmati River is heavily polluted due to 
uncontrolled and increasing urbanization, solid waste disposal, and 
uncontrolled discharge of domestic and industrial wastewater [3]. This 
improper disposal of solid waste in and around river systems degrades 
not only water quality but also aquatic ecosystems and human health; 
for instance, research by Devkota et al. found that haphazard disposal 
of solid waste on the banks of the Bishnumati River has severely 
deteriorated surface and subsurface water quality [4]. To avoid such 
situations, it is necessary to study not only the major rivers but also 
their tributaries, as they serve as critical pathways for the transport of 
pollutants [5]. The research on river waste detection and  

 
 

 
quantification in river systems is essential for understanding 
pollution levels, designing clean-up measures, and planning 
waste management policies. Traditionally, sampling and visual 
observations have been the primary methods for detecting and 
assessing waste in rivers. This approach, while straightforward, 
is labor-intensive, time-consuming, and often inconsistent due 
to human subjectivity [6]. However, automation aided by 
Machine Learning (ML) helps mitigate these limitations. Deep 
Learning (DL), a subset of ML, offers more accurate and 
scalable solutions compared to traditional methods [7]. The 
recent developments in Convolutional Neural Networks (CNN) 
have created a thriving environment for learning features from 
images, resulting in image classification, segmentation, and 
detection. Building on these advancements, a considerable 
amount of literature has been published on the detection of 
waste in water bodies using DL, specifically for macroplastic 
litter (plastic items > 5 mm), with most studies relying on 
camera images due to their availability and dataset size [8]. The 
effectiveness of such models depends not only on the 
algorithms but also on the quality and accessibility of image 
data. Using high-resolution aerial imagery from satellites is 
expensive. Unmanned Aerial Vehicles (UAVs) are considered 
a flexible and more economical alternative for aerial imagery 
without compromising on the quality of images. This is because 
UAVs can provide images with a high resolution and high 
image acquisition frequency [9]. However, manual 
interpretation of UAV images is slow, error-prone, and 
resource-intensive. To address this challenge, modern DL 
models, particularly CNN-based approaches, are increasingly 
used for automated waste detection using UAV-captured 
imagery [7]. 

The detection of waste in rivers is typically addressed using 
object detection and image segmentation [8]. Object detection 
focuses on identifying and localizing waste items in an image, 
drawing bounding boxes around the object. This is particularly 
useful for the quantification of waste. Segmentation, on the 
other hand, goes a step further by precisely delineating the 
boundaries of each waste region, pixel by pixel. This helps in 
the quantification of the area covered by the waste, which can 
be a better indicator of pollution severity than just the number 
of items. Our study employs object detection and segmentation 
to take advantage of the strengths of each approach and improve 
waste detection in riverine environments. 
Research addressing waste detection in rivers for an object 
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detection task has predominantly relied on models from the You 
Only Look Once (YOLO) [10] family of models [11, 12, 13, 
14, 15], or adaptations derived from it [16, 17, 18]. Numerous 
studies chose YOLOv5 as their model of choice [11, 14, 13, 
12], while Yang et al. used an adaptation derived from 
YOLOv5 [17]. In contrast, Tharani et al. [19] and van Lieshout 
et al. [20] used MLDet (VGG) [21] and Faster-RCNN [22] with 
Inceptionv2 [23] for river litter detection, respectively. A study 
by Maharjan et al. on river plastic detection using UAVs and 
YOLO-based DL techniques compared a number of YOLO 
models, from YOLOv1 to YOLOv5, with YOLOv5s achieving 
the highest mAP of 0.81 with low computational costs [11]. 
However, a study by Cordova et al. recorded an improved 
AP@0.5 of 84.9% for YOLOv5x over 79.9% for YOLOv5s on 
the PlastOPol dataset [24]. As such, the YOLOv5 family (both 
YOLOv5s and YOLOv5x) was selected, with different 
performance and efficiency trade-offs suitable for different 
deployment scenarios in river waste detection. In addition to 
that, a study by Roshni et al. employed YOLOv5 and YOLOv7 
for trash detection in aquatic environments, including 
underwater trash detection [25]. Based on the study by Yusof et 
al., YOLOv7 performed better than YOLOv5 and YOLOv6 in 
road defect detection with the highest mAP of 0.79 [26]. This 
was also supported by the research of Gasparovic et al., proving 
that YOLOv7 scored a high 0.963 mAP, which exceeded 
YOLOv6’s 0.953 mAP [27]. Therefore, the YOLOv7 
application was considered to be useful for this study, in 
alignment with its proved superiority over YOLOv5 and 
YOLOv6 in different detection tasks. 

Several studies have explored image segmentation 
techniques for litter detection in various water bodies, like 
seashores [28] [29], marine surfaces [30], marine underwater 
[31], lakes [32], and rivers [19, 32, 33, 34]. U-Net [35] and 
DeepLabv3+ [36] are popular CNNs that have found extensive 
applications in diverse segmentation tasks due to their 
flexibility in use across various domains [37]. Given that the U-
Net model is inspired by the Fully Convolutional Network 
(FCN) [38], using FCN as a baseline for our study is beneficial, 
as it provides a foundation for comparison with more advanced 
segmentation architectures like DeepLabv3+. Additionally, a 
study by Shi et al. [39] showed that DeepLabv3+ performs with 
a high accuracy of 91.7% in waste area segmentation tasks for 
real-time operations like application in sweeping robots. 
Furthermore, adaptations of DeepLabv3+ have shown to 
achieve a 0.82 mIoU score on manually labeled multispectral 
imagery data of floating plastics [33]. Given its strong 
performance in waste detection and segmentation, we 
incorporate DeepLabv3+ in addition to FCN for our study. 
The primary contributions of this article are summarized as 
follows: 
We assess the effectiveness of YOLOv5 and YOLOv7, two 
widely used object detection models, for the detection of waste 
in riverine environments. We analyze the performance of 
DeepLabv3+ and FCN in segmenting waste regions within river 
systems. The remainder of the paper is organized as follows: 
Section 2 provides the materials and methods of the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Location of the study site. 
 
study, which include the study area, material used, 
methodology, and the performance indicators of the models. 
Section 3 then describes the results. Discussion of the results is 
in the Section 4 and finally the conclusion is in Section 5. 

II. MATERIALS AND METHODS 
A. Study Area 

Data collection was conducted in the Dhobi Khola (D1) and 
Mahadev Khola (D2) located in Kathmandu, Nepal, as shown 
in Figure 1. D1 is a tributary of the larger Bagmati River based 
in Kathmandu, the capital city. On the other hand, D2 is a 
tributary of the Bishnumati River. The Bishnumati River flows 
into the Bagmati River, which is also located in Kathmandu. 
The Bagmati River is part of the Koshi River basin, which 
ultimately drains into the Ganges basin. We chose the study 
sites based on considerations of data collection accessibility and 
their role as major sources of waste flowing into downstream 
areas. 
 
B. Materials 

For this study, aerial surveys were performed using a DJI 
Mavic 3 Enterprise drone equipped with a 20-megapixel 
imaging sensor. This drone was selected for its high-resolution 
imaging capabilities and stable flight performance, making it 
well-suited for environmental monitoring. Photos were taken at 
a 5280 x 3956 pixel resolution with the camera’s ISO set to 100. 
To maintain consistent image quality, flight paths were planned 
to ensure uniform coverage and minimize variations in lighting 
conditions. The shutter speed and aperture were configured for 
automatic adjustment. UAV flights were conducted at an 
altitude of 45 meters above ground level. It yielded a Ground 
Sample Distance (GSD) of 0.6125 cm or less across the study 
area, ensuring a high level of spatial detail in the collected data. 
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Fig. 2. Object detection methodology. 
 
C. Methodology 
This section provides an overview of the various DL model 
architectures employed in the study, along with the proposed 
methodologies for plastic waste detection in rivers. The primary 
objective is to assess model performance in detecting and 
classifying waste in riverine environments using aerial imagery 
and advanced DL techniques. To achieve this, we first collected 
image data from the D1 and D2. The acquired images were 
preprocessed by cropping them to a standardized resolution of 
256 × 256. Subsequently, these images were manually 
annotated to create ground truth labels for both object detection 
and semantic segmentation tasks, as illustrated in Figures 2 and 
3 respectively. Annotation was conducted to ensure high-
quality training data, enabling accurate model predictions. Both 
datasets D1 and D2, annotated for the object detection and 
segmentation tasks, were split into an 80:10:10 ratio for 
training, validation, and testing, respectively. In the semantic 
segmentation task, we trained FCN and DeepLabv3+ 
architectures on the train set of the dataset. The best-performing 
model was selected based on evaluation metrics, including 
mean Intersection 3 over Union (mIoU), Dice coefficient, 
Precision, and Recall scores, as depicted in Figure 3. Models 
are evaluated on the test set of the corresponding dataset. These 
metrics provide a comprehensive assessment of model 
effectiveness in segmenting plastic waste from river imagery. 
Similarly, for the object detection task, we trained multiple 
variations of the YOLOv5 and YOLOv7 architectures, 
selecting the optimal model based on key performance metrics, 
as shown in Figure 2. These models were evaluated using 
standard object detection metrics such as mean Average 
Precision (mAP), Precision, Recall, and F1-score. By 
comparing the evaluation metrics across different models, we 
identify the best-performing model for the dataset. 
YOLOv5: The YOLOv5 model, part of the "You Only Look 
Once" (YOLO) family of architectures, is a SOTA object 
detection framework known for its speed and accuracy. 
YOLOv5, like other versions from the YOLO family of 
architectures, specializes in detecting and localizing multiple 
objects within an image by simultaneously predicting bounding 
boxes and class probabilities. This makes it particularly 
effective for tasks requiring the detection of diverse objects in 
complex environments, such as waste detection in rivers from 

aerial imagery. The network is divided into the backbone, neck,  
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 3. Semantic Segmentation Methodology 

 
and detection head. It uses CSPDarkNet53 as its backbone. In 
the backbone, the Cross-Stage Partial (CSP) network maintains 
the original accuracy while improving the inference time. It also 
solves the problem of network learning duplicate gradients for 
different layers of the network, caused by multiple skip 
connections. It solves the problem by 4 dividing the input into 
two parts, one of which goes through the usual in-between 
layers and another gets concatenated after that block. Due to 
this advantage of the CSP network, the DarkNet53 backbone 
from the YOLOv3 [40] is modified to utilize the CSP network, 
resulting in the CSPDarkNet53 backbone for feature extraction. 
To further enhance this feature extraction process, the neck part 
of the model is used. YOLOv5 achieves this enhanced feature 
extraction by using Spatial Pyramid Pooling Fast (SPPF), a 
faster version of Spatial Pyramid Pooling (SPP), and 
CSP_PANet, an adaptation of PANet that uses CSP between 
some of the PANet layers. It concatenates the feature map 
instead of adding it, as performed in PANet. This improves the 
processing speed of the model, making the feature enhancement 
process faster. Lastly, anchors are used for the detection head 
of the network, like in the YOLOv3 model. For this study, the 
YOLOv5 model was used without any modifications. 
YOLOv7: With a significant improvement in speed and 
improvement in accuracy, YOLOv7 marked a substantial 
improvement from its predecessors. The YOLOv7 model 
introduces novel modifications such as Extended Efficient 
Layer Aggregation Network (E-ELAN), model scaling, 
planned re-parameterized convolution, and penalty for lead 
loss. Similar to the YOLOv5 model, the YOLOv7 network is 
also divided into three parts: the backbone, the neck, and the 
detection head. The use of E-ELAN enhanced the management 
of the gradient path, hence improving its efficiency. The ELAN 
layer consists of multiple CBS structures. Here, CBS structure 
means convolutional layer, batch normalization layer, followed 
by SiLU activation. Additionally, the implementation of model 
scaling allowed for scalable models, i.e., the ability to create 
models of varying sizes. This helps in maintaining the optimal 
model structure while mitigating hardware resource 
consumption. The CUC layer is the basic unit of feature map 
combination, including convolution, up-sampling, and 
combining feature maps. The REP layer is a novel concept that 
uses the skill of structural reparameterization to adjust the 
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structure in inference to improve the performance of the model. 
There are multiple heads in the YOLOv7 architecture. The 
auxiliary head contributes to the training process, while the lead 
head produces the final output. YOLOv7 assigns coarse labels 
for the auxiliary head, whereas fine labels are assigned for the 
lead head. Therefore, two types of losses are employed. 
(auxiliary loss and main loss). With the help of an assistant loss, 
the weights of the auxiliary heads are updated. Additionally, a 
technique is used after training called reparameterization to 
improve the model. It does not increase the training time but 
improves the inference results. For this study, we used two 
variants of the YOLOv7 model: the regular YOLOv7 model 
and a larger YOLOv7x model. 
Fully Convolutional Network (FCN): FCN is a segmentation 
model that only uses only convolutional layers. It uses a CNN 
to extract image features, then transforms the number of 
channels into the number of classes via a 1×1 convolutional 
layer, and finally transforms the height and width of the feature 
maps to those of the input image via the transposed convolution. 
In FCN, fully connected layers are omitted, making the network 
capable of producing dense, pixel-wise predictions directly 
while also having capabilities to support input of multiple sizes. 
ResNet101 is used as the backbone. The FCN architecture used 
for this study is provided in the torchvision [41] package by 
PyTorch. This architecture was chosen to ensure 
reproducibility, leaving behind community-tested 
implementations. For training the model, we used an output 
stride of 16 and a learning rate of 0.04 using a poly-learning rate 
scheduler. 
DeepLabv3+: DeepLabv3+ is a SOTA semantic segmentation 
model, specializing in detailed mask generation. The use of 
atrous (dilated) convolution instead of the normal convolution 
with varying rates in the backbone enables better feature 
extraction without losing resolution. In DeepLabv3+, output 
from the backbone is passed to the Atrous Spatial Pyramid 
Pooling (ASPP) module to capture multiscale context using 
atrous convolutions with varying rates. This enables better 
feature extraction without losing resolution quality. ResNet101 
is utilized as the backbone for this study. Additionally, 
DeepLabv3+ uses an encoder-decoder architecture. The use of 
the decoder helps recover spatial details lost during down 
sampling. Furthermore, in both the ASPP and the decoder, the 
use of separable convolutions reduces computational 
complexity and improves speed; however, it does not reduce 
accuracy. For training the DeepLabv3+ model, similar to the 
FCN simulation, we used an output stride of 16 and a poly 
learning rate scheduler with a starting learning rate of 0.04. 
Performance Indicators: For object detection, the 
classification of True Positives (TP), False Positives (FP), and 
False Negatives (FN) occurs at the object level. This is based 
on an Intersection over Union (IoU) threshold, typically set at 
0.5. IoU is used to access the degree of overlap between the 
ground truth and prediction and is calculated using Equation 1. 
 
     

      (1) 

where, |A ∩ B| is the area of overlap (intersection) of the 
predicted and ground truth mask or bounding box,   |A ∪ B| is 
the area of union of the predicted and ground truth mask or 
bounding box. 

A detected bounding box is considered a TP if its IoU with 
the corresponding ground truth bounding box exceeds this 
threshold; if not, it is labeled as an FP. Undetected objects are 
categorized as FNs. On the other hand, image segmentation 
evaluates these metrics at the pixel level, where each pixel is 
assigned to either the waste or non-waste class. Unlike object 
detection, segmentation does not rely on a fixed IoU threshold. 
Instead, a pixel is deemed a TP if it is correctly classified as part 
of the target class. Misclassified pixels contribute to the FP and 
FN counts. This approach allows for a more detailed and fine-
grained evaluation of segmentation performance. 
Precision: Precision measures how accurate our waste 
detection is. It tells us what proportion of the objects we 
identified as waste were actually waste. It is calculated as the 
number of TP divided by the sum of TP and FP, as is given in 
Equation 2 below. 

 
       
                                                                               (2) 
 

Recall: Recall measures the ability of the model to find all the 
actual positive instances, i.e., waste instances. It is calculated as 
the number of TP divided by the sum of TP and FN and is given 
in Equation 3. 

 
                            (3) 
 

where FN is when a model fails to identify waste material. 
mIoU: The mIoU for binary semantic segmentation is given in 
Equation 4. 
 
             (4) 
 
Dice-Score: The Dice Score is one of the important 
measurement metrics to determine how a model performs in 
semantic segmentation, measuring the overlap between the 
predicted and ground truth segmentation masks. The Dice Score 
can be defined as: 
 
 
 
           (5) 
 
where, |A ∩ B| is the area of overlap (intersection) of the 
predicted and ground truth mask or bounding box, |A| is the 
total area of the predicted mask or bounding box, and |B| is the 
total area of the ground truth mask or bounding box. mAP@50: 
The mAP is a comprehensive performance metric for multi-
class object detection. The Average Precision (AP) scores for 
each class are averaged to determine it. Since there are only two 
classes (positive and negative) in binary classification, this 
reduces to the AP of the single positive class.  
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Fig. 4. Sample images from datasets used for training DL models for waste 
detection in rivers. (a) D1 (b) D2. 
 
For a particular class, the AP itself measures the trade-off 
between recall and precision. The area under the Precision-
Recall (P-R) curve is its formal definition. By adding up the 
accuracy values at distinct recall thresholds where the precision 
varies, this region is computationally estimated. mAP@50 is a 
6 popular variation of mAP, in which a detection is deemed TP 
if its IoU with a ground truth bounding box for the same class 
is larger than or equal to 0.5. Accordingly, mAP (or mAP@50) 
in our case denotes the AP of the positive (waste) class, as 
determined by the given IoU threshold. 
F1-score: The F1 score is a measure of a model’s accuracy on 
a dataset at a specific confidence level and IoU threshold. It is 
the harmonic mean of precision and recall of the model. It is 
given in Equation 6. 
   
             (6) 
 

III. RESULTS AND DISCUSSION 
Dataset Preparation: The image dataset consists of images 
cropped to a size of 256 × 256 pixels. We annotated the images 
using Supervisely [42] to record the bounding box and 
segments for each identifiable piece of waste in each image. 
Manual labeling of waste in the image is a work-intensive task. 
Though some labeling errors are inevitable due to difficulty 
detecting the substance, labelers have made every effort to 
identify just waste. After annotations, images are randomly 
associated with training, validation, and test sets with a split 
ratio of 80:10:10, respectively. The dataset represents only 
floating or above-water waste. Sample images from the D1 and 
D2 datasets are shown in Figure 4.  
Experimental Results for Object Detection: For the D1 
dataset, YOLOv5l achieved the highest precision of 0.959. 
However, in terms of recall and F1 score, YOLOv7x 
outperformed all models, achieving a score of 0.866 for both 
metrics. While YOLOv5l recorded the highest mAP@50 score 
of 0.875, YOLOv7x attained a comparable mAP@50 score of 
0.862. Given its superior F1 score and competitive mAP@50 
performance, YOLOv7x is identified as the best-performing 
model for D1. For the D2 dataset, YOLOv7-e6 demonstrated 

 
Fig. 5. Object Detection Result: (a) YOLOv5l results on dataset D1 (b) 
YOLOv5m results on dataset D2 (c) YOLOv7x results on dataset D1 (d) 
YOLOv7 results on dataset D2. 

TABLE 1: OBJECT DETECTION RESULTS 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

the highest precision at 0.956, whereas YOLOv5l exhibited 
superior recall and F1-score, both at 0.883 and 0.885, 
respectively. Nonetheless, YOLOv5m achieved the highest 
mAP@50 score of 0.915, emerging as the best model for D2, as 
mAP@50 serves as a critical benchmark for overall model 
performance. Among the YOLOv5 variants, YOLOv5l was the 
best-performing model for the D1 dataset, achieving the highest 
mAP@50 score of 0.875. Similarly, among the YOLOv7 
variants, YOLOv7x demonstrated the best performance with a 
mAP@50 score of 0.862. While the F1 scores for YOLOv5l 
(0.828) and YOLOv7x (0.866) indicate strong precision-recall 
balance, our primary metric remains mAP@50, as it provides a 
more comprehensive evaluation of detection performance. For 
the D2 dataset, YOLOv5m outperformed other YOLOv5 
variants, attaining a mAP@50score of 0.915, while among the 
YOLOv7 models, YOLOv7 achieved the highest mAP@50 
score of 0.895. Although YOLOv5m and YOLOv7 also 
exhibited high F1 scores (0.854 and 0.865, respectively), we 
prioritize mAP@50 as our key performance indicator for a 
more reliable assessment of model effectiveness. 
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Fig. 6. Segmentation Result dataset (a) DeepLabsV3+ results on dataset D1 (b) 
DeepLabsV3+ results on dataset D2. 

TABLE 2: SEMANTIC SEGMENTATION RESULTS 
 
 

 
 
 
 
Experimental Results for Semantic Segmentation: DeepLabv3+ 
outperformed the FCN model across all evaluation metrics on 
Dataset D1. Specifically, DeepLabv3+ achieved a higher mIoU 
score of 0.811 compared to 0.782 for FCN, as well as a superior 
Dice score of 0.886 against 0.866. Additionally, it demonstrated 
higher precision (0.900 vs. 0.874) and better recall (0.873 vs. 
0.858). Similarly, in dataset D2, DeepLabv3+ again surpasses 
the FCN model in all the different metrics under consideration. 
Instead of FCN’s 0.792, DeepLabv3+ produced a mIoU of 
0.832. As for Dice coefficient, DeepLabv3+ achieved 0.901, 
with FCN registering 0.872. On Precision, DeepLabv3+ got 
0.903 while FCN had 0.872; and on Recall, DeepLabv3+ had 
an edge of 0.899 over FCN’s 0.871. The segmentation result is 
visualized in Figure 6. Therefore, across both datasets, 
DeepLabv3+ consistently demonstrated superior performance, 
making it the better-performing model for waste segmentation. 
Minimum Detectable Waste Object Sizes: Detection of the 
tiniest waste item observed in datasets D1 and D2 is 
accomplished by applying both object detection and semantic 
segmentation methods. The study is carried out with the top 
models specific to each task on the respective datasets. 
Specifically, for object detection, YOLOv7x is applied to D1, 
whereas YOLOv5m is applied to D2. In the case of semantic 
segmentation, DeepLabV3+ is applied to both datasets. In D1, 
the minimum size of an object detected is 207.09 cm2 for object 
detection and 69.27 cm2 for segmentation. In D2, the minimum 
size of an object detected is 76.16 cm2 for object detection and 
165.44 cm2 for segmentation. They provide us with some 
information regarding the model’s capability to detect fine-
scale waste objects in the datasets. The smallest detectable 
waste is illustrated in Figure 7. 
For object detection, YOLOv7x was best for D1, with high 
recall (0.866) and F1-score (0.866), and YOLOv5m dominated 
D2 with better mAP@50 (0.915). YOLOv7x utilizes expanded 
E-ELAN to maximize feature reuse and dynamic label 
assignment for the sake of improving occluded object detection 
[43]. Such advances account for its improved recall on D1, 
which potentially holds overlapping waste instances. 
YOLOv5m’s anchor-based approach favors computational 

 
Fig.7. Visualization of the smallest detected waste objects for datasets (a) D1 
and (b) D2 using the best-performing models for object detection (YOLOv7x 
for D1, YOLOv5m for D2) and semantic segmentation (DeepLabV3+ for both 
datasets). 

 
 efficiency and accuracy [44] and this proves effective on D2, 
where object appearances can be more homogeneous. Its 
moderate depth and width probably avoid overfitting to 
intricate backgrounds. Notably, YOLOv5l achieved the highest 
precision on D1 (0.959), but its fixed anchor boxes struggled 
with occluded objects, resulting in lower recall (0.730 vs. 
YOLOv7x’s 0.866). Conversely, YOLOv7-e6’s lower 
precision on D2 (0.956 vs. YOLOv5m’s 0.940) suggests 
overfitting due to its larger parameter count—a limitation in 
smaller datasets. Dataset characteristics further modulated 
performance: D2’s higher mAP@50 across models (max 0.915 
vs. D1’s 0.875) indicate fewer annotation inconsistencies or 
less background clutter. 
DeepLabv3+ consistently outperformed FCN across both 
datasets, achieving superior mIoU, Dice, precision, and recall 
(Table 2). This dominance is attributable to its ASPP module, 
which employs multi-scale dilated convolutions to capture 
contextual information across varying object sizes—a feature 
critical for segmenting riverine waste with high size diversity 
[36]. In contrast, FCN’s reliance on single-scale upsampling 
[38] limits its ability to resolve small or fragmented objects, as 
evidenced by its lower mIoU (0.782 vs. 0.811 on D1). 
Furthermore, DeepLabv3+’s decoder module refines 
segmentation boundaries using low-level features, reducing 
edge artifacts and improving precision (0.900 vs. 0.874 on D1). 
The visual results (Figure 6) confirm this, with DeepLabv3+ 
producing sharper delineations of both small and large debris. 
The performance gap between datasets (e.g., mIoU of 0.832 on 
D2 vs. 0.811 on D1 for DeepLabv3+) may reflect differences in 
dataset complexity. D2’s higher scores suggest objects with 
more distinct boundaries or fewer occlusions, whereas D1’s 
cluttered river scenes likely challenge both models. However, 
DeepLabv3+’s consistent superiority across datasets highlights 
ASPP’s robustness to scale variation, aligning with findings by 
Chen et al. [36]. 

IV. CONCLUSION 
This research was carried out to assess the performance of 
modern DL architectures for object detection and semantic 
segmentation for riverine waste detection, which is a key 
environmental monitoring challenge. From our results, we 
observe that DeepLabv3+ outperforms FCN consistently in 
semantic segmentation because of ASPP and a boundary-
refining decoder to combat scale variation and edge errors 
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intrinsic to complicated waste-filled scenes. For object 
detection, YOLOv7x performed well in Dataset D1, and 
YOLOv5m recorded better mAP@50 for Dataset D2. The 
findings add to the collective aspiration of automating 
environmental monitoring and provide an agenda to weigh the 
optimization of accuracy, efficiency, and adaptability of waste 
detection systems. Future research should focus on leveraging 
large-scale datasets from multiple rivers across different 
regions of the country and exploring advanced DL approaches 
to further enhance waste detection and support sustainable 
environmental management. 
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