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Abstract—The advancement of deep learning techniques, 

particularly Generative Adversarial Networks (GANs), has 
revolutionized the field of video enhancement. Improving video 
quality is essential across multiple domains, including 
entertainment, media production, and surveillance. This project 
introduces a video enhancement system based on Super-
Resolution GAN (SRGAN) to upscale and restore low-resolution, 
degraded videos. The project includes the design and 
implementation of advanced models utilizing Convolutional 
Neural Networks (CNNs) and SRGAN, with a focus on optimizing 
these models for efficient training and inference. A user-friendly 
interface has been developed to facilitate seamless interaction, 
making the technology accessible to non-technical users. For 
training the model, the REDS dataset was carefully preprocessed 
to generate blurred, downsampled, and compressed video frames, 
enhancing the diversity and complexity of the data. This approach 
enables the model to effectively reconstruct high-quality video 
frames from low-quality inputs. The model achieved a Peak 
Signal-to-Noise Ratio (PSNR) of 28.67 and a Structural Similarity 
Index (SSIM) of 0.87, demonstrating its ability to significantly 
improve video resolution and perceptual quality. 
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I. INTRODUCTION 
IDEO enhancement has evolved significantly with the 
emergence of deep learning techniques, particularly 
Generative Adversarial Networks (GANs). Beginning 

with basic signal processing methods, the field progressed to 
embrace more sophisticated algorithms as computational power 
increased. Machine learning, through models like Support 
Vector Machines and Random Forests, demonstrated notable 
improvements over traditional approaches by learning 
mappings between low- and high-quality video pairs. However, 
it was the emergence of deep learning, notably Convolutional 
Neural Networks (CNNs), that started a fundamental change in 
video enhancement. CNNs, with their ability to learn 
hierarchical features directly from raw pixel data, became 
instrumental in tasks such as super-resolution, as demonstrated  

 
 

 
by the Super Resolution Convolutional Neural Network 
(SRCNN). The introduction of GANs by Goodfellow et al. [1] 
in 2014 entered in a new era of video enhancement. GANs, 
comprising a generator and a discriminator trained 
adversarially, demonstrated remarkable capabilities in 
generating high-quality, realistic images. The Super-Resolution 
GAN (SRGAN), introduced by Ledig et al. [2] in 2017, further 
advanced the field by combining adversarial and content losses 
to produce photorealistic high-resolution images from low-
resolution inputs. The application of GANs to video 
enhancement demonstrated impressive results in improving 
visual quality and reducing noise.  

II. RELATED THEORY 
The field of generative adversarial networks (GANs) has 

seen remarkable advancements, enabling significant 
improvements in various domains, including video 
enhancement and medical imaging. Recent studies have 
leveraged the unique capabilities of GANs to address complex 
challenges, such as improving compressed video quality and 
augmenting medical imaging datasets for enhanced diagnostic 
accuracy. Below, we review notable works that highlight the 
diverse applications of GAN-based architectures. 

  CVEGAN: A Perceptually-inspired GAN for Compressed 
Video Enhancement” by Ma et al. [3] proposes a novel GAN 
architecture to enhance compressed video frames. The 
generator uses a Multi-Resolution block (Mul2Res) with 
multiple residual learning branches, an Enhanced Residual 
NonLocal Block (ERNB), and an Enhanced Convolutional 
Block Attention Module (ECBAM). The training strategy 
employs a relativistic sphere GAN (ReSphereGAN) and new 
perceptual loss functions. Evaluated within MPEG HEVC and 
VVC test models, CVEGAN achieves significant coding gains, 
with up to 28% improvement in post-processing (PP) and 38% 
in spatial resolution adaptation (SRA) for HM 16.20, and up to 
8.0% and 20.3% respectively for VTM 7.0. 

“GANs-Based Intracoronary Optical Coherence 
Tomography Image Augmentation for Improved Plaques 
Characterization Using Deep Neural Networks” by Nikroo et  
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Fig. 1. SRGAN architecture [7]. 
 
al. [4] The study presents a method for augmenting a dataset of  
intracoronary optical coherence tomography (OCT) images 
using conditional generative adversarial networks (cGANs). 
The goal is to enhance the classification of coronary plaques. 
The dataset consists of OCT images from 51 patients, which 
were augmented by factors of 5×, 10×, 50×, and 100× using 
cGANs. The augmented images were used to train an AlexNet 
model, and it was found that augmenting the dataset by a factor 
of 50× improved classification accuracy by 15.8%. The study 
demonstrates that synthetic images generated by cGANs can 
effectively complement real images in training deep learning 
models, resulting in better classification performance. 

  ”Photo-Realistic Single Image Super-Resolution Using a 
Generative Adversarial Network” by Ledig et al. [2] This paper 
introduces SRGAN, a Generative Adversarial Network (GAN) 
for single image super-resolution. The SRGAN aims to produce 
photo-realistic high-resolution images from low-resolution 
inputs by employing a perceptual loss function that combines 
an adversarial loss with a content loss. The adver8sarial loss 
helps the generator network produce images that are 
indistinguishable from real high-resolution images, while the 
content loss, based on VGG network feature maps, focuses on 
perceptual similarity rather than pixel-wise accuracy. The 
SRGAN significantly improves the visual quality of super-
resolved images, particularly for high upscaling factors like 4×, 
surpassing traditional methods that optimize for mean squared 
error (MSE) and peak signal-to-noise ratio (PSNR) 

  A Comparative Analysis of SRGAN Models” by Zafar et 
al. [5] evaluates the performance of several state-of-the-art 
Super-Resolution Generative Adversarial Network (SRGAN) 
models on real-world images. The Enhanced Deep Super 
Resolution (EDSR) model is highlighted for its effectiveness, 
employing deep convolutional neural networks to achieve high- 

 
quality image reconstructions. Similarly, the Enhanced Super-
Resolution Generative Adversarial Network (ESRGAN) and its  
upgraded version, Real-ESRGAN, are noted for their ability to 
generate realistic textures and high-resolution images through 
advanced architectural modifications like Residual-in-Residual 
Dense Blocks (RRDB). The study also emphasizes the 
importance of GANs in enhancing image quality, particularly 
for applications involving Optical Character Recognition 
(OCR), where improved visual fidelity directly correlates with 
better text recognition accuracy. 

III. METHODOLOGY 

A. Dataset Preparation  
   For this study, the dataset was derived from the REDS 

dataset [6], a widely used benchmark in video enhancement 
tasks. The REDS dataset contains 300 high-quality videos, 
which served as the ground truth for training and evaluation. To 
simulate low-resolution conditions and create input-output 
pairs for the model, the high-resolution frames were processed 
using the following techniques: 

1) Downscaling: The frames were resized to lower 
resolutions (94,94) to simulate standard degradation caused by 
resolution loss.  

2) Downscaling with Blurring: In addition to downscaling,  
a Gaussian blur was applied to the frames, mimicking the 
effects of motion blur and optical distortions.  

3) Downscaling with Compression: After downscaling, the 
frames were compressed to replicate the degradation caused by 
video compression. 

These preprocessing steps ensured the creation of diverse 
low-resolution inputs that reflect real-world scenarios, enabling 
the model to learn to restore high-quality frames from various  
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Fig. 2. Generator network. 

 

 
Fig. 3. Generator network. 

 
types of degraded inputs. By applying preprocessing 
techniques, a robust dataset was created to train the model. 

B. Algorithm 
SRGAN introduced by Ledig et al. [2] is a generative 
adversarial network for single image super-resolution. It uses a 
perceptual loss function which consists of an adversarial loss 
and a content loss. The adversarial loss pushes the solution to 
the natural image manifold using a discriminator network that 
is trained to differentiate between the super-resolved images 
and original photo-realistic images. In addition, the authors use 
a content loss motivated by perceptual similarity instead of 
similarity in pixel space. The actual networks - depicted in the 
Figure 1 consist mainly of residual blocks for feature extraction. 
Formally we write the perceptual loss function as a weighted 
sum of a content loss lX SR and an adversarial loss component 

lGEN SR: 
𝑙𝑙𝑆𝑆𝑆𝑆 = 𝑙𝑙𝑋𝑋𝑆𝑆𝑆𝑆 + 10−3𝑙𝑙𝐺𝐺𝐺𝐺𝐺𝐺𝑆𝑆𝑆𝑆     (1) 

 
The figure illustrates the architecture of a Super-Resolution 
Generative Adversarial Network (SRGAN), which consists of 
two main parts: the Generator Network and the Discriminator 
Network. The Generator Network begins with an input image 
processed through an initial convolutional layer and a PReLU 
activation. It then passes through a series of residual blocks, 
each containing convolutional layers, batch normalization 
(BN), and PReLU activations. These blocks capture complex 
features from the input image. The output 14from the residual 
blocks is combined with the initial input through a skip 
connection, preserving the original details. After the residual 
blocks, the network includes more convolutional layers, batch 
normalization, and an element-wise sum operation. Finally, the 
image is upscaled using pixel shufflers and ReLU activations to 
produce the super-resolved image. 

C. Model Architecture 
The architecture consists of a generator network and a 
discriminator network, each designed to complement the 
generative adversarial framework. 
a) Generator Network: The generator employs a deep 
convolutional neural network (CNN) to map a lowdimensional 
input latent space to a high-resolution output. The architecture 
primarily comprises residual convolutional blocks, upsampling 
layers, and activations. 
Input layer: The generator take input of size [3, 96, 96]. 
Convolutional Layer: The input tensor is processed through an 
initial convolutional layer, followed by PReLU activation, 
producing feature maps of dimensions [64, 96, 96]. • Residual 
Blocks: The network integrates multiple ResidualConvBlocks, 
each containing two convolutional layers with skip 
connections, enhancing feature representation and gradient 
flow. Each block outputs feature maps with consistent spatial 
dimensions. 
Upsampling Mechanism: To achieve spatial resolution 
enhancement, UpsampleBlocks are used, which integrate 
learnable interpolation layers followed by convolution and 
activation, increasing the resolution by factors of 2 (from [64, 
96, 96] to [64, 384, 384]). 
Output Layer: A final convolutional layer maps the upsampled 
feature maps to the desired output dimensions, [3, 384, 384], 
corresponding to the RGB image output. 
b) Discriminator Network: The discriminator is a CNN-based 
classifier that evaluates the authenticity of the generated 
samples against the real data. The architecture is structured as 
follows: 
Convolutional Feature Extraction: A sequence of convolutional 
layers progressively reduces spatial dimensions while 
increasing feature channels, starting from 64 to a maximum of 
512. Each convolutional layer is followed by LeakyReLU 
activations and BatchNorm layers for enhanced convergence. 
Fully Connected Layers: Flattened features from the final 
convolutional block are fed into a fully connected layer of size 
1024 with LeakyReLU activation. The final output layer maps  
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Fig. 4. System block diagram. 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. Discriminator and generator loss over epochs. 
 
to a single neuron using a linear activation, providing a scalar 
score for adversarial loss. 
Discriminative Power: The network’s hierarchical design 
allows it to effectively differentiate between high frequency 
details and contextual features in generated vs. real samples. 

D. System Block Diagram 
This diagram illustrates the system workflow for video 
enhancement using SRGAN. 
1) Data Collection: The videos sourced from REDs serves as 
our dataset.  
2) Frame Extraction: Videos are split into 100 individual frames 
to create static images that can be processed by the model.  
3) Preprocessing: The extracted frames are degraded through 
blurring, downscaling, and compression to simulate real-world 
low-resolution inputs. This step ensures the creation of low-
quality data to train the model effectively.  
4) Feature Extraction Using CNN: Convolutional Neural 
Network (CNNs) is used to extract features from the low-
resolution frames, which serve as input to the SRGAN model.  
5) SRGAN (Super-Resolution Generative Adversarial 
Network): 
    • Generator: The generator learns to transform lowresolution 
frames into high-resolution outputs by synthesizing realistic 
details.  
    • Discriminator: The discriminator evaluates the outputs of 
the generator, distinguishing between the generated high-
resolution frames and the original ground truth to improve the 
generator’s performance. 
6) Post-Processing: Once the generator produces high-
resolution frames, they are recombined to make video.  
7) Evaluation: The final enhanced frames are compared to the 
ground truth frames to evaluate the model’s performance using 
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity  

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Sample image. 
 

 
Fig. 7. Enhanced image. 

 
Index (SSIM). 
E.    Performance Metrices 
Peak Signal-to-Noise Ratio (PSNR) 
   Measures the ratio between the maximum possible value of a 
signal and the power of corrupting noise that affects the fidelity 
of its representation. It is represented as: 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 10𝑙𝑙𝑙𝑙𝑙𝑙10  (𝑀𝑀𝑀𝑀𝑀𝑀𝐼𝐼
2

𝑀𝑀𝑀𝑀𝑀𝑀 )    (2) 
 
where MSE is mean squared error. 
 
Structural Similarity Index (SSIM) 
Measures the similarity between two images. It considers 
changes in structural information, luminance, and contrast. 
 

𝑃𝑃𝑃𝑃𝑆𝑆𝑆𝑆(𝑥𝑥, 𝑦𝑦) = (2𝜇𝜇𝑥𝑥𝜇𝜇𝑦𝑦+𝐶𝐶1)(2𝜎𝜎𝑥𝑥𝑦𝑦+𝐶𝐶2)
(𝜇𝜇𝑥𝑥2+𝜇𝜇𝑦𝑦2+𝐶𝐶2)       (3) 

III. RESULTS AND DISCUSSION 

A. Generator and Discriminator Loss Over Epochs 
   This plot shows how the generator and discriminator losses 

evolve during training. Early on, the generator has a high loss 
because it starts out producing poor-quality images and the 
discriminator quickly learns to distinguish real from fake, so its 
loss is relatively low. Over time, the generator improves and its 
loss settles around 0.9, indicating it is producing convincing 
images. The discriminator’s spikes suggest moments when the 
generator briefly fools it by producing high-quality images, 
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causing the discriminator to temporarily misclassify. The plot 
shows a stable adversarial balance: the generator steadily 
improves while the discriminator mostly maintains the edge but 
occasionally gets fooled by the generator. 

B. Qualitative Analysis 
Figures 6 and 7 illustrate a difference between a low-

resolution input frame and its corresponding enhanced output. 
Figure 6 represents the original low-resolution frame, which 
exhibits visible pixelation, blurring, and a lack of fine details. 
In contrast, Figure 7 showcases the enhanced frame produced 
by the model, demonstrating significant improvements in 
sharpness, texture restoration, and overall visual fidelity. To 
quantitatively assess the enhancement, Peak Signal-to-Noise 
Ratio (PSNR) and Structural Similarity Index (SSIM) metrics 
are used. The model achieves a PSNR of 28.67 dB and an SSIM 
of 0.87, indicating a substantial improvement in image quality 
while preserving structural details. The high SSIM score further 
confirms that the enhanced frames maintain perceptual 
similarity to high-resolution references, ensuring a realistic and 
visually appealing output. The visual and numerical results 
demonstrate the capability of the model in producing high-
quality video frames, making it suitable for real-world 
applications where video clarity is crucial. 

 
V. CONCLUSION 

In this work, a video enhancement model based on Super 
Resolution GAN (SRGAN) was developed to improve the 
resolution and perceptual quality of low-resolution videos. 
Trained on the REDS dataset, the model achieved a PSNR of 
28.67 dB and an SSIM of 0.87, showcasing its effectiveness in 
generating high-quality video frames. The integration of a user-
friendly interface allows for easy interaction, making the 
technology accessible to both technical and non-technical users. 
This model demonstrates its potential for real-world 
applications, including video restoration, surveillance footage 
enhancement, and media production, where high-resolution 
video is critical. In future work, optimizing the model to 
improve PSNR and SSIM scores can further enhance the quality 
of generated frames. Real-time processing for efficient 
inference on mobile devices and embedded systems would also 
make the model more applicable to a wider range of industries. 
Additionally, expanding the model’s capability to handle 
various video formats and resolutions, along with generalizing 
across diverse datasets, would improve robustness and ensure 
better performance in real-world scenarios. 
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